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The problem of steady internal gravity waves in stratified flow over a rough bottom is 
of great significance in connection with the investigation of wave processes in the ocean 
and the atmosphere. There are two common methods of solving this problem in the linear 
approximation. The first consists in the exact numerical solution of the linearized system 
of equations of hydrodynamics [i, 2], the second in replacing the function describing the 
shape of the rough bottom either by a function having a simple form (e.g., a hemispherical 
shape [3]) or by a system of point sources taken with a certain weighting [i, 4]; as a re- 
suit, for particular cases of the Brunt-Vaisala frequency distribution N(z) (N(z) is usually 
assumed to be constant [3, 4]) the problem can be solved analytically. The shortcomings of 
the first method includes the boundedness of the region of space in which the problem can be 
solved numerically, while in investigating the problem by the second method it is not possible 
to estimate the limits of applicability of the approximations. Accordingly, there is interest 
in solving the problem using the Green' function of the internal wave equation and also its 
asymptotic form [5-7], which makes it possible not only to investigate the problem numerically 
but also to employ various approximations to simplify the solution. 

It is proposed to consider the problem of stratified flow with an arbitrary Brunt- 
Vaisala frequency distribution over a rough bottom when the height of the underwater obstacle 
is assumed tobe small as compared with the thickness of the fluid layer. The free surface 
z = 0 is replaced by a rigid roof, and the Cartesian coordinate system is so chosen that the 
plane x, y lies on the horizontal surface of the bottom. When x § -~ the flow is asymptoti- 
cally one-dimensional with constant velocity V along the x axis. The flow is assumed to be 
weakly stratified, i.e., the internal Froude number Fr = V/N,h, (N, is the characteristic 
Brunt-Vaisala frequency, h, is the height of the obstacle) is greater than unity. Physically, 
this means that the fluid particles in the undisturbed flow possess sufficient kinetic energy 
to rise to the height of the obstacle, i.e., the pattern of the bottom trajectories must have 
qualitatively the same form as in the case of a homogeneous fluid [3]. 

The verticial component w of the internal wave (IW) velocity satisfies the following IW 
equation, which can be obtained from the linearized system of equations of hydrodynamics in 
the Boussinesq approximation [5]: 

L , w  = O, 

02(02 o ~ o ~ ) ( O~ ~ 
L,=Tp 

On the bottom, the shape of whose surface is described by the function Z(x, y) = -h ~ + 
h(x, y), the no-flow condition u grad Z = 0 is satisfied (u = (V + ul, u2 w) is the IW velo- 
city vector, (u I, u2) are the horizontal components of the IW velocity). After lineari- 
zation, on the assumption that h(x, y) << h ~ the boundary condition is transferred to the 
bottom~z = -h ~ and has the form [2] w = -VSh/Sx ~ f(x, y), z = - h ~ 

Borovitkov et al. [5] considered the function G,(x, y, z, zQ, t), which is the solution 
of the problem 

L , G ,  = QO (t) 6~t (x - Vt) 8 (y) 6 '  (z - zo), 

G,=O, z=O,--h ~ 
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Here, 0(t) = 0 when t < 0; 8(t) = i when t ~ 0; z0 is the depth of the point mass source 
switched on at t = 0; and Q is its strength. In this case the function G, describes the 
vertical IW velocity field. We write the limit of G, for t § ~ and ~ = x - VT in the form: 

G (g, y, z, Zo) = lim G, (z, y, z, z o, t), 
; t - ) o o  

where 
a ~G.; G~=--In(~<O), G~ I~ = o ~ . = I + (~ > 0 ) ;  

I n ~ = s  i e x p ( ~  t~t,~(v){--tvy)A,~(v,z,%)dv; 
- - o o  

~ o o  

0% (~o' v). 
A,~(v,z, zo)= + 1  q%(z,v) 0% ' 

0% ("o' ~) 
B,~(v, z, zo) = 1 %  (z, v) % 

~ (~) v ~ ( ~ (~) ~'~ (~) 

~ (v) v ~ (x~ (~) ~[ (v) 

Here ~n(V), 

sponding problems 

~--~ + b~(~) + ~] [ ~(~ 

O~n [ N2 
v~z[ ( v) 

Xn(O), ~n(Z, v) and 0n(z, v) are the eigenvalues and eigenfunctions of the corre- 

I ] % = O, 

--+I]%=0, 

The function G(g, 
internal waves from the source in the stratified flow, satisfies the equation 

0~ ~ ~ + 0 ~  o-7 (~) ~ + V "  

S i n c e  we a r e  i n t e r e s t e d  in  t h e  s t e a d y  f low o f  a s t r a t i f i e d  f l u i d  ove r  a rough  bo t t om,  
t h e  v e r t i c a l  component  w o f  t h e  IW v e l o c i t y  must  s a t i s f y  t h e  e q u a t i o n s .  

Lm = O; 

w = O, z = O; 

w = / ( ~ ,  ~ ,  z =  - - h <  

(2), 

~=~=0, z=0,--ht 

y, z, z0), which describes the vertical velocity field of the steady 

We now denote $ by x; then the function w satisfying Eq. 
(3) can be represented in the form 

(i) 

(2) 

(3) 

(i) and boundary conditions 

w G(x x ' ,y--y,z , --h~ ,y) y,  (4 )  
~2 

where ~ is the domain, and f(x, y) # 0. The solution thus obtained is a sum of triple 
quadratures, which complicates both the numerical calculation of the function w and its 
qualitative analysis; accordingly, in what follows we will use the asymptotic forms of the 
function G(x, y, z, z0) constructed in [6, 7]. To be specific, we will consider the obstacle 
shape from [2]; then a vertical cut of the function h(x, y) perpendicular to the x axis will 
be a semiellipse and, folowing the notation of [2], we can represent the function h(x, y) in 
the form h(x, y) = H(x) x W-i(x)(W2(x) - y2)i/2 when y ~ W(x) and h(x, y) = 0 when y > W(x), 
where H(x) = 3/2 Dx.~ (i + x~) -I, W(x) = H(x) when x ! W, W(x) = 3/4 Dx~ -4 when x > X, x, = 

x/X, X = 25 m, and D = 13 m. We have h ~ = 50 m, and the maximum height of the obstacle is 
0.2h ~ (Fig. i). In this case it is possible to integrate with respect to the variable y~ and 
write the expression for the function w in the form: 
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w =  w,~, w ~ = w $ + w . ,  (5)  
n = l  

. , :  = _ __re J ez'  A (,,, ~, - ho) ~ ~,~ (,) (~ - x')] ~o~ (,,u) P (,,, x') a,,, 
o o 

o o  o ~  

- -  : q  B .  (~,, z, - -  h ~ X 
o o 

X exp (--  Xn (v) lx - -  x '  I) cos (vy) P (~, x ' )  dr,  

p (v, x) z, (,) [w  (x) H'  (x) - -  H (x) W' (x)l +/~ (x) w (x) J0 (~), �9 = ~w (x) = - 7 -  

( J 0 ( x )  and J l ( x )  a r e  z e r o t h - o r d e r  and f i r s t - o r d e r  g e s s e t  f u n c t i o n s ) .  The r e s u l t s  o f  n u m e r i -  
c a l l y  c a l c u l a t i n g  t h e  f u n c t i o n  w ( c o n t i n u o u s  c u r v e )  f o r  t h e  d i s t r i b u t i o n  N(z)  t a k e n  f rom [2]  
( F i g .  2) a r e  p r e s e n t e d  in  F i g s .  3 and 4; t h e  r e m a i n i n g  p a r a m e t e r s  have  t h e  f o l l o w i n g  v a l u e s :  
Q = 1 m a / s e c ,  V = 5 m / s e c .  For  F i g .  3 y = 0, f o r  F i g .  4 z = - 0 . 5 h  ~ The b roken  c u r v e  i n  
F i g .  3 r e p r e s e n t s  t h e  c a l c u l a t i o n  o f  t h e  v e r t i c a l  v e l o c i t y  f o r  y = 0 t a k e n  f rom [ 2 ] .  We 
n o t e  t h a t  a l l  t h e  c h a r a c t e r i s t i c s  o f  our  n u m e r i c a l  r e s u l t s  c o i n c i d e  w i t h  t h o s e  i n d i c a t e d  
i n  [2]  : t h e  v e r t i c a l  v e l o c i t y  w0 r a p i d l y  d e c r e a s e s  w i t h  d e c r e a s e  in  t h e  d e p t h  z and when 
z = - 0 . 5 h  ~ i s  o n l y  a b o u t  15% o f  t h e  v a l u e  o f  w on t h e  b o t t o m  (z  = - h ~  which  c o i n c i d e s  w i t h  
t h e  f u n c t i o n  f ( x ,  y ) .  The s m a l l  d i f f e r e n c e s  i n  t h e  s p a t i a l  s t r u c t u r e s  o f  t h e  two s o l u t i o n s  
a r e  t h e  r e s u l t  o f  t h e  f a c t  t h a t  i n  [2] t h e  B o u s s i n e s q  a p p r o x i m a t i o n  was n o t  u sed  in  t h e  nu-  
m e r i c a l  s o l u t i o n  o f  t h e  p rob l em  and t h e  s u r f a c e  o f  t h e  f l u i d  a t  z = 0 was assumed t o  be f r e e .  

We will now consider the function w in the region adjacent to the rough bottom. The 
near-field asymptotic expansion of the function G(x, y, z, z0) has the form [7]: 

z z+ 

G (x, y, ~, ~o) = ~ (p~ $-T._)~/~ + (~,~ + 4_) ~/~'-  
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+ 

2mh ~ - -  z_ 2mh ~ -[- z_ 
+ 

2 m h  ~ - ~ + .+ ]} 
( p ~ = z 2 + g 2 ,  z _ = z - - z o ,  z + = z + Z o ) .  

(6) 

The function b(x, y, z, z 0) is a sum of terms each of which is a derivative with res- 
pect to z of the fundamental solution of the Laplace equation and represents the field 
created by a source at the depth z m = !z0 + 2mh ~ (m = 0, • i2 .... ) in a homogeneous fluid. 
The series (6) converges rapidly for large m, since the m-th term decreases as m -3, and to 
achieve an accuracy of the order of one percent it is necessary to sum not more than ten 
terms of the series. Replacing the function G(x, y, z, z 0) in (4) by b(x, y, z, z0), we 
obtain an expression for w in the region adjacent to the rough bottom: 

w ,~ --~- b (x - -  x ' ,  y - -  g ' ,  z, - -  h~ ] (x ' ,  y ')  dx'  dy '  ----- S (x, y, z). 
.Q 

(7) 

The function S satisfies the Laplace equation and boundary conditions (2), (3), i.e., 
describes the flow of a homogeneous fluid over the rough bottom. Figures 3 and 4 give the 
results of calculating the function S (Broken curve). As the numerical calculations show, 
at distances of the order of h ~ from the rough bottom the flow is almost potential and de- 
pends only on the geometry of the problem. However, with increasing distance from the rough 
bottom it is necessary to take into account the stratification of the fluid. By means of the 
near-field asymptotic expansion of the function G it is also possible to determine the 
corrections to the potential flow needed to take stratification into account. For this 
purpose we represent b(x, y, z, z 0) in the form [8]: 

�9 b (x, g, z, Zo) = ~ K~ (x, y, z, Zo), 
n = l  

gn  (x, y, z, Zo) = ~ g o ~ hO ] sin ~--~-] ~ -~ -}  

(K0(x) is a zeroth-order Macdonald function). In [7] it was shown that K n is the near-field 
asymptotic expansion of the individual mode Gn, and as the mode number n increases the func- 
tion K n approaches G n with ever greater accuracy. We now represent w in the form: 

w = S +  ~ A~, 

f i  

(8) 

Then the procedure for calculating the corrections to the potential flow at a point x, 
y, z in order to take stratification into account is as follows: (i) the function S is 
calculated from (7), (2) then the term A I is determined; if A I << s, then the next terms in 
(8) need not be found; (3) if A l is comparable with S, then the term A 2 is calculated; (4) if 
A 2 << S + A1, then the summation in (8) is interrupted, and so on. The procedure described 
makes it possible not only to calculate accurately the IW near field but also to estimate 
the error of the asymptotic expressions. The results of calculating S (chain curve), S + 
A I (broken curve), S + A I + A2 (dotted curve), and w (continuous curve) for z = -O.5h ~ y = 
0.5h ~ are reproduced in Fig. 5. As the numerical calculations show, at distances from the 
rought bottom of the order of the thickness of the fluid layer taking two corrections into 
account gives almost the exact value of the field, which makes it unnecessary to calculate 
the entire sum (5). 
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At large distances from the rough bottom the IW field splits into individual modes; 
moreover, at large distances in the case of weak stratification it is possible to disregard 
the exact shape of the obstacle and replace it by a suitable system of sources (a widely 
used method for investigating stratified flow over various bodies [i, 9]). In the present 
case the bottom roughness takes the form of a single convex obstacle; therefore the exact 
boundary condition on the bottom can be replaced by 

w = T(x, y), z = .hO,  r(x, y) = ra(y ) [a (x+)  - 8 (x . ) l ,  

t ~ ] / ( x , y ) l d x d y ,  F = -  T 
g~ 

where x+/are the coordinates of the source and sink determined by the geometry of the prob- 

lem, andlsince the function H(x) has a single maximum, the values of X+ can be found from 
-- I 

the equation H"(x) = 0: x+ % h~ x_ % h ~ . Moreover, at large distances from the source 

it is possible to replace each mode G n by its asymptotic form [6]: 

p A. (v,,) z, zo) ~ll4Ai' (~) _~ 6 .  (x, u, z, ~o) ~ ~ -  V 2 ~ .  ( , . )  �9 

n (x, y, z, ~o), ~ = (~n (~ , )  z - ~ ,y ) j  . 

Here, Ai'(x) is the derivative of the Airy function; and ~, is the root of the equation 

~n(~) = y/x. As a result, the field of the individual mode at large distances from the 
rough bottom can be represented as 

r [R (x+,  y, z, - h ~ - -  R (x_,  y, z, - -  ho)]. (9) 

The results of the calculations carried out using (9) are represented by a dotted curve 
in Fig. 4. The numerical calculations show that at distances greater than 10h ~ the use of 
the asymptotic form of the function G and the replacement of the obstacle by a suitable 
system of sources make it possible to calculat~ the IW field without resorting to clumsy 
calculations based on (5). 

Thus, the use of the Green's function of the internal wave equation makes it possible 
not only to solve accuratelyIthe problem of steady flow of a stratified fluid over a rough 
bottom but also, on the basis of asymptotic representations of the Green's function, to in- 
vestigate efficiently the internal wave fields. 

In conclusion, the author wishes to thank V. A. Borovikov and Yu. V. Vladimirov for 
fruitful discussions and their constant interest in his work. 
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